الگوریتم‌های فراابتکاری نوعی از الگوریتم‌های دقیق هستند که برای یافتن پاسخ بهینه به کار می‌روند.

روش‌ها و الگوریتم‌های بهینه‌سازی به دو دسته الگوریتمهای دقیق (exact) و الگوریتم‌های تقریبی (approximate algortithms) تقسیم‌بندی می‌شوند.

الگوریتم‌های دقیق قادر به یافتن جواب بهینه به صورت دقیق هستند اما در مورد مسائل بهینه سازی سخت کارایی ندارند و زمان حل آنها در این مسائل به صورت نمایی افزایش می‌یابد. الگوریتم‌های تقریبی قادر به یافتن جواب‌های خوب (نزدیک به بهینه) در زمان حل کوتاه برای مسائل بهینه‌سازی سخت هستند. الگوریتم‌های تقریبی نیز به سه دسته الگوریتم‌های ابتکاری (heuristic) و فراابتکاری (meta-heuristic) و فوق ابتکاری (hyper heuristic) بخش بندی می شوند. دو مشکل اصلی الگوریتم‌های ابتکاری، قرار گرفتن آنها در بهینه‌های محلی، و ناتوانی آنها برای کاربرد در مسائل گوناگون است. الگوریتم‌های فراابتکاری برای حل این مشکلات الگوریتم‌های ابتکاری ارائه شده‌اند. در واقع الگوریتم‌های فراابتکاری، یکی از انواع الگوریتم‌های بهینه‌سازی تقریبی هستند که دارای راهکارهای برونرفت از بهینه محلی می‌باشند و قابل کاربرد در طیف گسترده ای از مسائل هستند.  رده های گوناگونی از این نوع الگوریتم در ده های اخیر توسعه یافته است.

دسته‌بندی الگوریتم‌های فراابتکاری

معیارهای مختلفی می‌تواند برای طبقه‌بندی الگوریتم‌های فراابتکاری استفاده شود:
مبتنی بر یک جواب و مبتنی بر جمعیت : الگوریتم‌های مبتنی بر یک جواب در حین فرایند جستجو یک جواب را تغییر می‌دهند، در حالی که در الگوریتم‌های مبتنی بر جمعیت در حین جستجو، یک جمعیت از جواب‌ها در نظر گرفته می‌شوند.
الهام گرفته شده از طبیعت و بدون الهام از طبیعت: بسیاری از الگوریتم‌های فراابتکاری از طبیعت الهام گرفته شده‌اند، در این میان برخی از الگوریتم‌های فراابتکاری نیز از طبیعت الهام گرفته نشده اند.
با حافظه و بدون حافظه: برخی از الگوریتم‌های فراابتکاری فاقد حافظه می‌باشند، به این معنا که، این نوع الگوریتم‌ها از اطلاعات بدست آمده در حین جستجو استفاده نمی‌کنند (به طور مثال تبرید شبیه‌سازی شده). این در حالی است که در برخی از الگوریتم‌های فراابتکاری نظیر جستجوی ممنوعه از حافظه استفاده می‌کنند. این حافظه اطلاعات بدست آمده در حین جستجو را در خود ذخیره می‌کند.
قطعی و احتمالی: یک الگوریتم فراابتکاری قطعی نظیر جستجوی ممنوعه، مسئله را با استفاده از تصمیمات قطعی حل می‌کند. اما در الگوریتم‌های فراابتکاری احتمالی نظیر تبرید شبیه سازی شده، یک سری قوانین احتمالی در حین جستجو مورد استفاده قرار می‌گیرد.

الگوریتم‌های فراابتکاری بر پایه جمعیت

از الگوریتم‌های شناخته شده فراابتکاری بر پایه جمعیت می‌توان الگوریتم‌های تکاملی (الگوریتم ژنتیک، برنامه‌ریزی ژنتیک، …)، بهینه‌سازی کلونی مورچگان، کلونی زنبورها، روش بهینه‌سازی ازدحام ذرات، الگوریتم رقابت استعماری ، و الگوریتم چکه آبهای هوشمند را نام برد.
الگوریتم‌های متداول فراابتکاری مبتنی بر یک جواب

از الگوریتم‌های متداول فراابتکاری مبتنی بر یک جواب می‌توان الگوریتم جستجوی ممنوعه و الگوریتم تبرید شبیه‌سازی شده را نام برد.


پیاده‌سازی الگوریتم‌های فراابتکاری

فرایند طراحی و پیاده‌سازی الگوریتم‌های فراابتکاری دارای سه مرحله‌ی متوالی است که هر کدام از آن‌ها دارای گام‌های مختلفی هستند. در هر گام فعالیت‌هایی باید انجام شود تا آن گام کامل شود. مرحله‌ی ۱ آماده‌سازی است که در آن باید شناخت دقیقی از مسئله‌ای که می‌خواهیم حل کنیم بدست آوریم، و اهداف طراحی الگوریتم فراابتکاری برای آن باید با توجه به روش‌های حل موجود برای این مسئله به طور واضح و شفاف مشخص شود. مرحله‌ی بعدی، ساخت نام دارد. مهمترین اهداف این مرحله انتخاب استراتژی حل، تعریف معیارهای اندازه گیری عملکرد، و طراحی الگوریتم برای استراتژی حل انتخابی می‌باشد. آخرین مرحله پیاده‌سازی است که در آن پیاده‌سازی الگوریتم طراحی شده در مرحله‌ی قبل، شامل تنظیم پارامترها، تحلیل عملکرد، و در نهایت تدون و تهیه گزارش نتایج باید انجام شود.

4 thoughts on “آموزش الگوریتم های فرا ابتکاری

  • می 28, 2015 at 10:03 ق.ظ
    Permalink

    سلام.بسیار عالی بود.خیلی دنبال این دسته بندی بودم.متشکرم

    Reply
  • نوامبر 7, 2016 at 12:56 ب.ظ
    Permalink

    سلام .اطلاعات خوبی بود ،ممنونم .لطفا الگوریتم vnsهم گذاشته شود .

    Reply

پاسخ دهید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *